How to Calculate the Significant Caries Index (SiC Index)

- > without computers
- \succ with computers
- ➢ with Internet

Dr Makiko Nishi Prof. Douglas Bratthall Dr Jayanthi Stjernswärd

WHO Collaborating Centre Faculty of Odontology, University of Malmö, Sweden

PDF Vers. 1.0; 2001-03-6

Contents

Τŀ	ie Significant Caries Index	3
	Introduction	3
	References	4
A.	How to calculate the SIC Index - with or without computer	5
	For a data set consisting of individual DMFT values	5
	For a set of data with breakdown of DMFT according to number of individuals	7
B.	IF YOU ARE AN INTERNET USER AND HAVE EXCEL® IN YOUR COMPUTER	9
	For a data set consisting of individual DMFT values	11
	For a set of data with breakdown of DMFT according to number of individuals	12
	Further usage of this Web page	13
C.	IF YOU ARE <u>NOT</u> AN INTERNET USER BUT HAVE EXCEL® IN YOUR COMPUTER	18
	For a data set consisting of individual DMFT values	18
	For a set of data with breakdown of DMFT according to number of individuals	30

Though this booklet outlines alternative ways to calculate the Significant Caries Index, the quickest and the most direct method is presented in Chapter "B. IF YOU ARE AN INTERNET USER AND HAVE EXCEL® IN YOUR COMPUTER...", page 9.

Address for Correspondence: Prof. Douglas Bratthall WHO Collaborating Centre Faculty of Odontology, Malmö University Carl Gustafs Väg 34, SE-214 21 Malmö, Sweden Fax: +46 - 40 6658529; Tel: +46 - 40 6658527 E-mail: Douglas.Bratthall@od.mah.se

The Significant Caries Index

Introduction

In 1981 the World Health Assembly of the WHO declared that the global goal for oral health by the year 2000 should be that the DMFT for the 12-year-olds should not exceed 3, in all the countries. Over a period of twenty years, nearly 70% of the countries in the world have succeeded in achieving this goal, or have never exceeded this borderline value¹⁾.

Certainly these facts reflect a great achievement in the improvement of oral health. However, a detailed analysis of the caries situation in many countries show that there is a skewed distribution of caries prevalence - meaning that a proportion of 12-year-olds still has high or even very high DMFT values even though a proportion is totally caries free. Clearly, the mean DMFT value does not accurately reflect this skewed distribution leading to incorrect conclusion that the caries situation for the whole population is controlled while in reality several individuals still have caries.

A new index called the 'Significant Caries Index' (SiC) was proposed in the year 2000^{2} , in order to bring attention to those individuals with the highest caries scores in each population. The SiC Index is the Mean DMFT of the one third of the study group with the highest caries score. The index is used as a complement to the mean DMFT value.

To calculate Significant Caries Index:

- Sort the individuals according to their DMFT
- Select the one third of the population with the highest caries values
- Calculate the Mean DMFT for this subgroup.

Simultaneously, a new oral health goal was proposed that, by the year 2015, the SiC Index should be less than 3 DMFT among the 12-year-olds, globally. When a country has reached this goal, the proposed idea is to look at provinces, districts, cities or parts of districts/cities, so that in any defined population, the SiC Index is higher than 3 DMFT. This means that it will be necessary to calculate the SiC Index at several administrative levels, hence a need for a booklet that outlines some ways to calculate this index.

Considering the wide range of information technology available in this new millennium, the aim of this booklet is therefore to provide assistance in calculating the SiC Index under different situations. It starts with a presentation of very basic methods that can be carried out with or without the computer. Then, more convenient and direct ways are provided, which uses the Internet with the Excel® program. For non-Internet users, we have described as to how to use the Excel® functions in the calculation of this new index.

References

1. Updates on epidemiological data and SiC Index will continuously be added under this Internet address: http://www.whocollab.od.mah.se/index.html

2. Bratthall D, Introducing the Significant Caries Index together with a proposal for a new global oral health goal for 12-year-olds. Int Dent J 2000, **50:** 378-384.

The graph shows caries data for a population, expressed as frequency distribution. In this example, about 45 % are caries free (DMFT=0). The mean DMFT is 1.91, and the Significant Caries Index is 4.61. Arrow and vertical line indicate the individuals that are included in the calculation of the index.

A. How to calculate the SiC Index - with or without computer

To calculate the SiC Index, the original set of data must be presented as the DMFT distribution in a population or in a group. There are two ways to express the DMFT distribution. In one order, the data set contains individual DMFT values. It means that the population is described such as "individual no. 1 has 0 DMFT, individual no. 2 has 0 DMFT, individual no. 3 has 2 DMFT", and so on.

In the other order, the data are already grouped, such as "10 persons have 0 DMFT, 11 persons have 1 DMFT, 7 persons have 2 DMFT", and so on. Though both orders can be changed to each other, this booklet will show separately how to calculate the SiC Index without changing the way the data is presented.

For a data set consisting of individual DMFT values

Calculating the Mean DMFT

You have a data set of individual DMFT values. Calculate the sum of all the DMFT values. Then, divide this sum by the total number of individuals to obtain the Mean DMFT (for comparison, the Mean DMFT is usually presented together with the SiC Index.

Indiv. no.	DMFT
1	0
2	0
3	2
4	1
5	0
6	5
7	0
8	14
9	2
10	0
11	3

The sum of the DMFT values: 0+0+2+1+0+5+0+14+2+0+3=27

The total number of individuals: 11

The average of the DMFT values: 27/11=2,4545...

Result: the Mean DMFT: 2,45

(There are seldom reasons to present the DMFT value with more than two decimals, often one decimal is enough, in this case thus 2,5.)

Please observe: To facilitate understanding of the methods we present calculations for very small populations in this booklet, like 11 individuals only in the example above. In reality much larger samples are of course needed to get a representative result.

Calculating the SiC Index

Examine how many individuals there are in 'the one third of the population'. Round the result to get the number of the subgroup for the SiC Index.

The value of the one third in the given example: 11/3=3.6666...

The rounded number of the subgroup: 4

(When the total number of a population cannot be divided by 3, count fractions of .5 and over as units and cut away the rest.)

Sort the data numerically and select the one third of the population with the highest DMFT values.

DMFT]
0	
0	
0	
0	
0	
1	
2	
2	h
3	ll
5] (
14	J

The DMFT values in the selected subgroup: 2, 3, 5, 14

Add each DMFT value in the subgroup.

The sum of the DMFT values in the subgroup: 2+3+5+14=24

Divide this sum by the total number of individuals in the subgroup to get the SiC I ndex.

The average of the DMFT values in the subgroup: 24/4=6

Result: the SiC Index of this population: 6.0

For a set of data with breakdown of DMFT according to number of individuals

Calculating the Mean DMFT

DMFT	number
0	10
1	11
2	7
3	6
4	4
5	3
6	3
7	2
8	1
9	1
10	0
11	1
12	1
total	50

In this example, you have the data as a breakdown of DMFT - for example, 10 individuals have DMFT 0, 11 persons have 1 DMFT etc.

Multiply each DMFT index by the corresponding number of persons and add the sum all: $(0^{*}10)$ + $(1^{*}11)$ + $(2^{*}7)$ + $(3^{*}6)$ + $(4^{*}4)$ + $(5^{*}3)$ + $(6^{*}3)$ + $(7^{*}2)$ + $(8^{*}1)$ + $(9^{*}1)$ + $(10^{*}0)$ + $(11^{*}1)$ + $(12^{*}1)$ =146

Divide this result by the total number of individuals in the population: 146/50=2.92

Result: the Mean DMFT: 2.9

Calculating the SiC Index

At first, calculate how many individuals there are in 'the one third of the population'. Round the result to get the number of the subgroup that will form the basis for the SiC Index.

The value of the one third: 50/3=16.66...

The number of individuals in the subgroup: 17

Find this number of persons starting from the highest DMFT value (in our example DMFT=12).

1 (with DMFT 12) +1 (with DMFT 11, etc) +0 +1 +1 +2
+3 +3 +4= 16

DMFT	number	cumul.
0	10	
1	11	
2	7	
3	6	plus 1=17
4	4	16
5	3	12
6	3	9
7	2	6
8	1	4
9	1	3
10	0	2
11	1	2
12	1	1
total	50	

To get the predetermined value 17, one person from the group with DMFT3 is needed.

For the individuals as selected above, multiply each DMFT value with the corresponding number of individuals and add the sum all. This is the sum of the DMFT values in the subgroup.

The sum of the DMFT values in the subgroup: (1*3)+ (4*4)+ (5*3)+ (6*3)+ (7*2)+ (8*1)+ (9*1)+ (10*0)+ (11*1)+ (12*1) =106

Divide this sum by the number of individuals in the subgroup to get the average of the DMFT values in the selected subgroup: 106/17=6.23...

Result: the SiC Index of this population: 6.2

(If you are using a spreadsheet program, these calculations can of course be done in the program)

Please observe: If you have the distribution in percentage, you can also apply this method. However, the value of the SiC Index may be slightly different from the true value because of the rounding procedure.

B. If you are an Internet user and have Excel® in your computer...

http://www.whocollab.od.mah.se/expl/siccalculation.xls

This is an address of the Web page, where you can obtain the Mean DMFT and the SiC Index very easily. Please go to this page.

Note: To see the above page, please use the Internet Explorer and <u>not</u> the Netscape Communicator.

You will see this information box before you can view the page.

📲 Micro	soft Excel		×
•	The workbook you are opening contains macros. Some macros may contain h If you are sure this workbook is from a trusted source, click Yes. If you are not from running, click No.	armful viruses. sure and want to prever	nt any macros
	Yes No Cancel		
		Click here.	

It says that **Macros** may contain viruses. Click **Yes** button. (If you will find viruses in your computer, they have not come from this program).

Now you can see the page.

<u> </u>	ile <u>E</u> dit	⊻iew <u>I</u> n	isert F <u>o</u> rm	iat <u>T</u> ools	<u>D</u> ata <u>(</u>	<u>G</u> o F <u>a</u> v	orites	<u>H</u> elp				
	∜⊐ . Back	→ Forward	Stop	🕼 Refresh	Home	Q Search	Favor] 🛛 🌀 ites Histo) jj ry Tool	<mark>I</mark> Mail s Mail	S Print	Edit
Ag	įdress 🦉	http://www.	whocollab.	od.mah.se/e	xpl/siccalc	ulation.xls						
	C7	•	=	0								
	A	В	C	D	E	F		G	Н	I	J	K
1		For a data	set consis	ting of indi	vidual DM	FT	ն	For a set of	data with l	breakdown	of DMFT	according
2 3 4	Significan Caries Indez	Change the and you wil	e values of DN Lobtain mean	MFT in Colum DMFT and S	in C to your o iC of your dat	wn data, a.	_	Cha	nge number of data, and you	individuals to will obtain the	correspond mean DMFT	to your Fand
5			(For example	e)					(For example	9)		
6		individual no.	DMFT	mean DMFT	SiC			DMFT	number	mean DMFT	SiC	
7		1	0	2.45454545	6			0	10	2.92	6.23529412	2
8	-	2	U 2		T			1	11	1		
10		4	1					3	6			1
11		5	0	Mean ual	resents le of data			4	4	This cell p Mean ual	resents le of data	\mathbf{N}
12		6	5	entered ur	der DMFT			5	3	entered ur	nder	
13		7	0	in Column	C.			6	3	DMFT an	dnumber	\rightarrow
14	-	8	14					7	2	of individu	ials in	This cell p
16	-	10			This cell	presents		9	1	Columns	G and H.	the value
17		11	3	Į – – – – – – – – – – – – – – – – – – –	the value	for		10	0			- Significan
18		12	:		Significat	nt Caries red on		11	1			data in Co
19		13	:		data in C	olumn C.		12	1			G and H.
20		14	:					13	0			
21		15						14				
23		10						16	0			
•	Start 🛛 🤅	🦲 🗊 📉	🚿 »]	🏂 http:/	/www.wh	ocolla			NP	៰⊴}⊻ৣ⊲	, ₩ 4: 1	' 0:58 AM

There are two tables. One is for a data set consisting of individual DMFT values (Columns B-E). The other is for a set of data with breakdown of DMFT according to number of individuals (Columns G-J).

In the tables, the examples are the same as in the preceding chapter, "A. How to calculate the SiC Index - with or without computer". Therefore you can see the same values of the Mean DMFT and the SiC Index now.

For a data set consisting of individual DMFT values

In the left table, in Column B, you can see numbers for the individuals ('patient' 11000...etc). Column C is for their corresponding DMFT values. The Mean DMFT for the entered data is found in Cell D7, and the SiC Index for the same group in Cell E7.

<u> 🏠</u> h	ttp://w	ww.w	hoco	ollab.od	l.mah.s	e/expl/	siccalcu	ulation	.xls - Mic	roso	oft Intern	et Ex
] <u>E</u> i	ile <u>E</u> dit	t <u>V</u> ie	ew	<u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools	<u>D</u> ata	<u>G</u> o	F <u>a</u> vorites	<u>H</u> e	elp	
E	⟨⊐ , Back	For	→ ward	- C) op R	🔹 efresh	Home	Sea) 📝	rites	() History	
Add	Address 🙋 http://www.whocollab.od.mah.se/expl/siccalculation.xls											
	C7		-		= 0							
	A			В		С	D)	E			F
1			Fo	r a dat	a set c	onsist	ing of i	ndivi	dual DN	1FT	values	
2 3 4	Signifi Cari Inde	cant es x	Ch an	iange th d you w	ie value vill obta	s of DN in mean	IFT in C DMFT	olumn and Si	C to you: C of your	r owr data	n data,	
5					(For	example)					
6			indiv	idual n	<u>. D</u> I	MFT	mean I	MFT	SiC			
7					1	0	2.4545	45455		6		
8					2	0	┞ ┡			1		
9 10 11					3 4 5	2 1 0	This	cell pr	resents			
12					6	5	Mea	n valu red un	e of data der DMF	гЦ		
13					7	0	-in Co	olumn	C.		1	
14						- 14					<u>\</u>	_
16				1	0	0			This	cell p	oresents	
17				1	1	3	U.		the v	alue : c	for	
18				1	2		ľ		Juda	ncan	a Carries	
19				1	3				date	in Co	dumn C	
20				1	4	:			Gaba		lonui V.	

When you enter your own data in Column C, instead of the example values, the Mean DMFT and the SiC Index will be immediately calculated.

5		((For exampl)		\sim		
6	indiv	ridual no.	DMFT	mean	DMFT	SiC		
7		1	1	1.90	9738717	4.6142857:	14	
8		2						
9		3			l		١T	

For a set of data with breakdown of DMFT according to number of individuals

In the right table, in Column G, you can see DMFT indices. Column H is for their corresponding numbers of individuals. The Mean DMFT for the entered data is found in Cell I7, and the SiC Index for the same group in Cell J7.

plor	er				•	W 🛛 🗉	🍳 🔍 🧭
。 可 pols	Mail F	Print Edit					
	G	H	1	J		K	L
[.	ror a set of Chan own	data with br ge number of i data, and you	reakdown of individuals to will obtain the	correspond mean DMF	ac to T	your and SiC.	umper of Ind
	DMFT	(For example)	mean DMFT	SiC			
	0	10	2.92	6.2352941	18		
	1	11			5		
	2	7			/		
	3	6	This cell pr	esents			
	4	4	Mean valu	e of data			
	5	3	entered un	der DMFT			
	6	3	and numbe	rof			
	7	2	individuals	in		This cell prese	nts
	× ×	1	Columns G	and H.		the value for	
	10	1				Significant Ca	ries
	10	1				Index based or	a
	12	1				data in Colum	ns G
	13	1			_	and H.	

When you enter the data set you have in Column H, instead of the example values, the Mean DMFT and the SiC Index will be immediately calculated.

	(For example)			
DMFT	number	mean DMFT	SiC	
0	173	1.909738717	4.614285714	
1	58			
2	74		\sim	

Further usage of this Web page

If you save this Web page as an Excel file in your computer, you can use the so-called 'user-defined functions' for the SiC Index in any cell of any Excel file, on condition that the file is open. If you already have your data in an Excel file, this way is very convenient.

🏂 http://www.whocollab.od.ma	h.se/expl/siccalculation.	xls - Microsoft Inte	rnet Explorer
<u>File Edit View Insert For</u>	nat <u>T</u> ools <u>D</u> ata <u>G</u> o	F <u>a</u> vorites <u>H</u> elp	
New ► Person Ctrl+O Save As	Refresh Home Sear	ch Favorites Histor	1. Point here.
Page Setup Print Ctrl+P	od.mah.se/expl/siccalculation 0 C D	E E	2. Click here.
<u>I</u> mport and Export	t consisting of individ lues of DMFT in Column	lual DMFT value	s For
P <u>r</u> operties	btain mean DMFT and SiC	of your data.	
	or example) DMFT <u>mean DMFT</u>	SiC	I
	0 2.454545455	6	

Save As	? ×
Save in: 📝 Desktop	Any file name
My Computer	is OK.
	Cancel
	O <u>p</u> tions
	~ ~ ~
	Save as Excel
	WOI KDOOK.
File name: SiC	
Save as type: Microsoft Excel Workbook	

When you run this usage, you have to open this file on your computer. When you open the file, you see the information box. Click **Yes** button.

An example: you have already a data set in an Excel file like below. Click one empty cell where you would like to enter the SiC Index (for example D2). Then click the fx sign called **Paste Function**.

	🖹 Eile Edit View Insert Format Tools Data Window Help						
0	🖻 🖬 🎒	à. 🚏 🕺 🗈	🛍 ダ 🗠 👻	्य 👻 🍓 😤	Σ f _*	At It 🛍 💈	
Ari	al	• 10 • B	<i>I</i> <u>U</u> ≣ ₹	E = 🖬 🕏	%,	+.0 .00 ≠≒ ş	
	D2	r =					
	A	В	С	D	E	F	
1	individual no.	DMFT	mean DMFT	SiC		1. Click one	
2	1	0	1.9097387 📿		\mathbb{D}	empty cell.	
3	2	1			T I	1 0	
4	3	0					
5	4	2					
6	5	0					
7	6	0			· ·	2. Click <i>fx</i> .	
8	7	0					
9	8	4					
10	9	0					
11	10	1					
12	11	0					
13	12	U					
14	13	U					
15	14	U					
16	15	U					
17	16	U					
18	17	U 1					
19	18	1					

The **Paste Function** box will appear. In the **Function category** box, click **User Defined** at the last line. **SiCindividual** and **SiCbreakdown** will appear in the **Function name** box. Click **SiCindividual** for a data set consisting of individual DMFT values. Click **SiCbreakdown** for a set of data with breakdown of DMFT according to number of individuals. Then click **OK** or press **Enter**. You will see the **Formula Palette**.

Paste Function	? ×
Function category:	Function name:
All Financial Date & Time Math & Trig Statistical Lookup & Reference Database Text Logical Information User Defined	SiC.xlstSiCindividual
SiC.xls!SiCindividual(DMFT)	
Choose the Help button for help or	n this function and its arguments.
2	OK Cancel

• SiCindividual

This is Formula Palette of SiCindividual. The function works for a data set consisting of individual DMFT values. Enter the cells or column references where you put individual DMFT values, in the DMFT box (Column B in the example). Then click OK or press Enter.

FSiC.xls!SiC	Individual						
	DMFT B:B	🏊 = B:B					
		4 614005714					
Choose the	= 4.614285/14 Choose the Help button for help on this function and its arguments.						
	DMFT						
2	Formula result =4.614285714	OK Cancel					

Congratulations! You have succeeded in calculation the SiC Index.

	🕙 File Edit View Insert Format Tools Data Window Help						
0	🖻 🖬 🎒	à. 🚏 👗 🖻	🛍 ダ 🗠 🔹	ମ୍ୟ 🖌 🍓 💞	$\Sigma f_{\ast} \left \frac{A}{2} \right $	🕹 🛍	
Ari	al	▼ 10 ▼ B	<i>I</i> <u>U</u> ≣ ≣	≣ ≣ ₿	% , .	8 . 00 ∰ :	
	D2 💽	• = =S	iC.xls!SiCindivid	lual(B:B)			
	A	В	С	D	E	F	
1	individual no.	DMFT	mean DMFT	SiC			
2	1	0	1.909738717	4.614285714			
3	3	0					
4	5	0					
5	6	0					
6	7	0					
7	9	0					
8	11	0					

Please observe: if you enter for the whole column, like 'B:B', make sure that there are no other figures or values in the column, like year '2001' or so. Any value or number in Column B will be included in the calculation. (Text is possible, like 'DMFT'.)

• SiCbreakdown

This is **Formula Palette** of **SiCbreakdown**. The function works for a set of data with breakdown of DMFT according to number of individuals. Enter the cells or column references where you put DMFT indices, in the **DMFTindex** box. Enter the cells or column references where you put the numbers of individuals, in the **Number** box. Then click **OK** or press **Enter**.

_SiC.xls!Si	Cbreakdown						
DM	FTindex A2:A20	$\mathbf{N} = \{0;1;2;3;4;5;6;7;8;9\}$					
	Number B2:B20	1 = {173;58;74;31;38;1!					
L		4 614295714					
= 4.614285714 Choose the Help button for help on this function and its arguments.							
Number							
2	Formula result =4.614285714	OK Cancel					

Congratulations! You have succeeded in calculation the SiC Index.

	🕙 Eile Edit View Insert Format Iools Data Window Help						
	i 🖻 🖪 🎒 🕻	d 🚏 🐰 🖻	🛍 🝼 🔹	े र 😪 😤	$\Sigma f_{\mathbf{x}} \stackrel{\mathbf{A}}{\underset{\mathbf{Z}}{\downarrow}} \stackrel{\mathbf{Z}}{\underset{\mathbf{A}}{\downarrow}}$		
Ari	al	• 10 • B	<i>I</i> <u>U</u> ≣ ≣	≣≣⊠ \$	%, ^{↑.0} , .00	} f	
	D2 = =SiC.xls!SiCbreakdown(A2:A20,B2:B20)						
	A	В	С	D	E		
1	DMFT	number	mean DMFT	SiC			
2	0	173	1.909738717	4.614285714			
3	1	58			ľ		
4	2	74					
5	3	31					
6	4	38					
7	5	15					
8	6	10					

Please observe: DMFT indices should be whole numbers from 0 to a maximum of 32 with this program (because you don't have more than 32 teeth!).

C. If you are <u>not</u> an Internet user but have Excel® in your computer...

This chapter will explain how you can use Excel® for calculation of the Mean DMFT and the SiC Index, even if you cannot reach the Web page as described in the preceding chapter.

For a data set consisting of individual DMFT values

When a data set is described such as "individual no. 1 has 0 DMFT, individual no. 2 has 1 DMFT, individual no. 3 has 0 DMFT", and so on, the Mean DMFT and the SiC Index can be calculated easily by a few basic functions in Excel®. You can also use a formula we have developed for the SiC calculation. (The latter way is more convenient, if you have large data sets.)

Entering the data

Enter the individual DMFT data in each cell of one column (for example Column B). You can enter other data in other columns such as individual number, name, date of birth, names of examiners and so on.

	🞦 File Edit View Insert Format Tools Data Window Help								
	🖻 🖬 🖨 🕻	<u>ð</u> , ;	۶ 🖁	a C	🚿 🔊	C21 - v	😫 😤	Σf_{s}	≜ ↓ Z ↓ ∭
Ari	al	Ŧ	10 💌	B 2	<u>u</u> ≣	≣ ≣	5	%,	t.0 .00 ∰ f
	I1 .	- I	=						
	A		В		С		D	E	F
1	individual no.		DMFT	m	ean DMFT		SiC		
2	~			0					
3	2			1					
4	3			0					
5	4			2					
6	5			0					
7	6								
8	7		Ente	er th	e individı	ial nu	mbers i	n one co	lumn, and
			the colo	the corresponding DMFT values in another colomn.					

415	414	4		
416	415	0		In this example.
417	416	4		there are 421
418	417	0		individuals in
419	418	2		the group
420	419	0		the group.
421	420	Ū		
422	421	0		
423				

Calculating the Mean DMFT

Click one empty cell where you would like to enter the Mean DMFT value (for example C2). Then click the fx sign called **Paste Function**.

8	<u>File E</u> dit <u>V</u> iew	Insert Format]	ools <u>D</u> ata <u>W</u> ind	low <u>H</u> elp	\sim	
D	🖻 🖪 🎒 🕻	d 💱 🕺 🖻	🛍 ダ 🗠 🔹	ा 🗸 🍓 🥰	Σf_*	
Ari	al	• 10 • B	<u>I</u> <u>U</u> ≣≣		₿% <mark>Pas</mark>	te Function
	C2	=	_			
	A	В	C	D		1. Click one
1	individual no.	DMFT	mean DMFT	SiC		empty cell.
2	1	0				1.0
3	2	1		ľ		
4	3	0				
5	4	2				
6	5	0				2. Click fx.
7	6	0				
8	7	0				

A box as shown below will appear. Click **AVERAGE** in **Function name** box and press **Enter**.

If AVERAGE is not shown to the right, click 'All' in the 'Function category' box. You will then see all the Excel function names in alphabetical order and can select 'AVERAGE'.

Now you see the **AVERAGE** box, and you should specify which values the program should select for its calculation. Just click the individual DMFT column (Column B in this example) and you will get the following result:

AVERAGE	
Number1 B:B 📃 🔜 🔜	
Number2 = number	
- 2 4545455	
Returns the average (arithmetic mean) of its arguments, which can be numbers or name	'B:B'appears
arrays, or references that contain numbers. Number 1 number 1 number 2 - are 1 to 20 numeric arguments for which you u	here after you
the average.	select Column
Formula result = 2.454545455 OK Canc	В.

Please observe: It is important that there is no other information in the B column, for example year, sum etc. If so, you should select only the cells in which you have entered the DMFT data.

1	<u>File E</u> dit <u>V</u> iew	Insert Format]	[ools <u>D</u> ata <u>W</u> ind	low <u>H</u> elp		
D	🖻 🖬 🎒	🕉 🖏 📳	🖺 ダ 🗠 -	en 🔺 🍓 😤	$\Sigma f_{\mathbf{x}} \stackrel{\mathbf{A}}{\geq}$	A 🕹
Ari	al	▼ 10 ▼ B	<i>I</i> <u>U</u> ≣ ∃	i i i i i i i i i i i i i i i i i i i	% , .0	8 . 00 🗊 ·
	C2 💽	- = =A	VERAGE(B:B)			
	A	В	С	D	E	F
1	individual no.	DMFT	mean DMFT	SiC		
2	1	0	1.909738717	<u>v</u>		
3	3	0		Ĩ		
4	5	0				
5	6	0				
6	7	0				
7	9	0				
8	11	0				

Click **OK** or press **Enter**. You have got the Mean DMFT!

Calculating the SiC Index

Two alternative ways are presented in this section. One using basic functions following the principle of the SiC Index calculation (page 21), and the other using the formula to calculate the Index easily for large data sets (page 26).

Calculating the SiC Index with basic functions

To calculate the SiC Index, you need to 'Sort' the data. First, click the two columns including the Individual number and the DMFT values (Columns A and B in this example). On the **Data** menu, click **Sort**.

I Se A									
	<u>File E</u> dit <u>V</u> iew	Insert Format	Tools	<u>D</u> ata	<u>W</u> indow	Help			1 Click Columns
D	i 🖻 🔒 🎒 [d 🖤 🐰 🗈	8	<u></u> ĝ↓ <u>s</u>	ort			Σf_*	A and R
				F	ilter		- F		A and D.
Ari	al	• 10 • H			orm			%,	.00 +.0 ≧≓ :
	A1	- =	ividu:		<u>o</u> rm				
				S	u <u>b</u> totals			_	
	A	<u> </u>	ļ	V.	alidation			E	F
1	individual no.	DMFT	<u>j me</u>		-				
2	1	0	1.9	T	able			\mathbf{N}	
3	2	1		т	evt to Colu	IMPS			
4	3	n	1						2 Click here
5	4	 		C	.o <u>n</u> solidate	•••			2. Chek here.
<u> </u>	4	4		G	roup and (Dutline	- F		
6	5	U							
7	6	0		₩ P	ivotTable F	Report			
8	7	0							

In the **Sort by** box, click the arrow button. Select the DMFT column (as you want the individuals to be sorted according to the DMFT values) and ascending. Then click **OK** or press **Enter**.

Sort by Sort by DMFT O Ascending The individual no. DMFT O Ascending The noy Therroy C Descending My list has C Header row C No header row	1		1. Click here.		
Sort by DMFT • Ascending DMFT • Ascending Descending • Descending Therroy • Ascending O Descending • Ascending O Descending • Ascending My list has • No header row	Sort	? ×			
DMFT • Ascending DMFT • Ascending O Descending • Descending Therroy • Ascending • Descending • Descending • Descending • Obescending • Obescending • Obescending	Sort by				
Image: Standing Constraints Image: Standing Constraints	DMFT 💽				
DMFT • Ascending C Descending Therroy • Ascending • Descending • Ascending • Descending • My list has • Header row • No header row • No header row	(none)				
• Ascending 2. Select DMFT here. Therroy • Descending • Obscending • Obscending • Obscending • Obscending • My list has • No header row	The individual no.				
Therroy Therroy Ascending Descending My list has Header row O No header row		• Ascending	2. Select DMFT	here.	
Therey Ascending C Descending My list has Header row O No header row		C Descending			
Ascending O Descending My list has Header row O No header row	Then by	-			
O Descending 5. Click liere: Ascending. My list has	-	Ascending	2 Click home ! A	aaandin	a l
My list has The ender row C No header row		C Descending	5. Click here: A	scenan	ıg.
Header <u>row</u> No header ro <u>w</u>	My list has				
	🖲 Header <u>r</u> ow 🛛 🔿	No header ro <u>w</u>			
4 Click here			4 Click here		
Options OK Cancel 4. Circk Infec.	Options	OK Cancel	The check here.		

Before you calculate the number of the one third of the population, you can write "the number of 1/3" as for memo.

Click one empty cell (for example E2). Then click the equal sign (=) called **Edit** Formula.

8	<u>Eile E</u> dit <u>V</u> iew	Insert F <u>o</u> rmat I	ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp	_	
D	🖻 🖬 🎒	d 🚏 🐰 🖻	🛍 ダ 🗠 🔹	े 🗸 🍓 😤	Σf_{ss}	1. You click one
Ari	al	• 10 • B	I <u>U</u> ≣≣	≣ ≣ ඕ \$	%	empty cell.
	E2				/ '	
	A	BEdit	ormula	D	E	F
1	individual no.	DMFT	mean DMFT	SiC	thenum	ber of 1/3
2	1	0	1.909738717		_	<u>]</u>
3	3	0				
4	5	0				
5	6	0				2. Click here.
6	7	0				
7	9	0				
8	11	0				

In the **Formula Bar**, divide the total number of individuals (421) by 3. Thus, in this example you write "= 421/3" in E2 and then press **Enter**. The result is 140.333... If the total number cannot be divided by 3, you have to round it up. In other words, if fraction is '.5 'and over, use the higher value. Enter the result in one cell (for example E3). This is the number of individuals in the subgroup.

	<u>File E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat <u>I</u>	ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp		
) 🛩 🖪 🖨 🕻	d 🚏 🐰 🖻	🛍 ダ 🔛 🗸	ମ୍ୟ 👻 🍓 😤	Σf_{π}	<u></u> ≜↓ Z↓ 🛍 🧐
Ari	al	▼ 10 ▼ B	<i>I</i> <u>U</u> ≣ ∄	s = 🖻 \$	%,	t.0 .00 t≢ t
	E2	= =42	21/3			
	A	В	С	D	E	F
1	individual no.	DMFT	mean DMFT	SiC	the nun	nber of 1/3
2	1	0	1.909738717		140.33	33]
3	3	0				40
4	5	0				
5 6 7 8	Round 14 Put '140' had been should ha	0.333 to be in E3 as for r 140.666, th ve been 141.	a whole num nemo. If the 1 he rounded nu	ıber, 140. number ımber		

To calculate the Mean DMFT for the SiC subgroup, click one empty cell (for example D2). Then click the fx sign called **Paste Function**. Go on to click **AVERAGE** in **Function name** box.

	<u>File E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat <u>I</u>	ools <u>D</u> ata <u>W</u> ind	low <u>H</u> elp		
	🖻 🖬 🎒	à. 🚏 👗 🗈	🖻 ダ 🗠 •	ा न 😪 😤	Σf_*	🕽 🕂 🛣 🛍 🖇
Ari	al	• 10 • B	<i>I</i> <u>U</u> ≣ =	s = 🔤 \$	% ,E	Paste Function 🗧 🚦
	D2 💽	r =				
	A	В	С	D	F	1. Click one
1	individual no.	DMFT	mean DMFT	SiC	the nun	empty cell
2	1	0	1.909738717		140. 83	empty cen.
3	3	0			ľ 1	40
4	5	0			1	2. Click the fx
5	6	0				sign and
6	7	0				'Paste
7	9	0				function' will
8	11	0				
						appear.

You can see **AVERAGE** at the first line in **Function name box**, since you used it just before.

Paste Function	
Function gategory: Function name: Most Recently Used AWERAGE All All Financial SUMPRODUCT Date & Time COUNT Math & Trig ROUND Statistical COUNT Lookup & Reference PERCENTILE Database INT Text SUMIF Logical IF Information If AVERAGE(number 1, number 2,) Returns the average (arithmetic mean) of its arguments, which can be numbers or names, arrays, or references that contain numbers. Image: Content of the image is a streament of the image is a stream	Click here to select 'Average'

Now you need to enter the specific values on which the SiC Index should be calculated. Click the last cell among the DMFT values (in this example B422). Drag to include the number of the subgroup - you already know that it is 140 individuals. The cell references you are selecting are indicated in the **AVERAGE** box, too. Then press **Enter**.

] <u>E</u> ile <u>E</u> dit ⊻iew	<u>I</u> nsert F <u>o</u> rmat <u>T</u>	ools <u>D</u> ata <u>W</u> ind	low <u>H</u> elp		
) 📽 🖪 🚑 [à. 💖 👗 🖻	B 🖋 🗠 -	or + 🚷 💝	Σ f _*	
			1 <u>n</u> = -	= = E +	76 J	
	AVERAGE	<u> X V</u> = = A	VERAGE(B283	:B422)		1.Click the last
B283	:B422					cell.
280	254	2				
281	272	2				
282	274	2	140K X IC			2 Drog until
283	275	2)				2.D1 ag unun (140D' appears
284	294	2)	1			(140K appears
285	295	21				(140 means the
286	297 ;	20				number of the
287	300)	20		×	I	subgroup in this
412	40	3				population).
413	221	9	A			
414	120	10				
415	148	10				
416	311	10				
417	121	11				
418	22	14				
419	357	14				
420	160	16				
421	185	16				
422	3367	18	2			
1423						

Congratulations! You have succeeded in calculation the SiC Index.

	🔁 Eile Edit View Insert Format Iools Data Window Help											
0	🖻 🖬 🎒	d. 🚏 🐰 🗈	C	ダ 🗠 👻	cu 🗸 🍓	😤	Σf_{s}	₽	Z↓	1		
Ari	al	▼ 10 ▼ B	I	Ū ≣ ∄		\$	%,	+.0 .00	00. ◆ 0	t i		
	D2 💽	= =A'	VER/	AGE(B283	:B422)							
	A	В		С	D		E		F	-		
1	individual no.	DMFT	me	an DMFT	SiC		the nu	mbei	r of 1/	3		
2	1	0	1.9	09738717	4.614285	5714	140.3	333				
3	3	0			>		ſ	140				
	Average for tl	ne one third										
	with the high	e one third										
	with the light	iC Index										
	values = the S	ic muex.										
18-		0										

Calculating the SiC Index with formula

In the preceding section, you calculated the SiC Index with Excel® basic functions, **AVERAGE**, **equal** (=) **sign**, and **Sort**, following the principles of the SiC Index. Sometimes you may have too large data sets to drag cells readily.

With a formula we have developed combining with Excel® worksheet functions, you can calculate the SiC Index easily, for large data sets.

At first, name a range of the DMFT values "DMFT". On the **Insert** menu, point to **Name**, and then click **Define**.

In the **Names in workbook** box, enter the name, "DMFT". In the **Refers to** box, enter the **absolute references** of the range of the DMFT values including the sheet number.

Click one empty cell (for example D4). Then, enter the formula indicated below in **Formula Bar** (the box next to the '=' sign).

	<u>File E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat <u>T</u>	ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp		
∥ 🗅	🖻 🔒 🎒	à. 💱 🕺 🖻	🛍 ダ 🗠 •	er 🖌 🍓 🍪	Σ <i>f</i> *	1. Click one
Ari	al	▼ 10 ▼ B	<i>I</i> <u>U</u> ≣ ≣	≣ ≣ ₿	%,	empty cell.
	D2 💽	r =				
	A	B Form	ula Bar C		E	F
1	individual no.	DMFT	mean DMFT	SiC		2 Enter the
2	1	0	1.909738717			formula have
3	2	1				tormula nere.
4	3	0				
5	4	2				
6	5	0				
7	6	0				
8	7	0				

<Microsoft®Excel 2000 >

=(SUM(IF(DMFT>LARGE(DMFT,ROUND(COUNT(DMFT)/3,0)),DMFT,0))+LARGE(D MFT,ROUND(COUNT(DMFT)/3,0)) *(ROUND(COUNT(DMFT)/3,0)-COUNT(IF(DMFT>LARGE(DMFT,ROUND(COUNT(DMFT)/3,0)),COUNT(DMFT)))))/R OUND(COUNT(DMFT)/3,0)

<Microsoft®Excel 98 Macintosh Edition>

=(SUM(IF(DMFT>LARGE(DMFT;ROUND(COUNT(DMFT)/3;0));DMFT;0))+LAR GE(DMFT;ROUND(COUNT(DMFT)/3;0)) *(ROUND(COUNT(DMFT)/3;0)-COUNT(IF(DMFT>LARGE(DMFT;ROUND(COUNT(DMFT)/3;0));COUNT(DMFT)))))/ROUND(COUNT(DMFT)/3;0)

Then press "Control"+"Shift"+"Enter" (Note! Not only "Enter").

Congratulations! You have succeeded in calculation the SiC Index.

	<u>File E</u> dit <u>V</u> iew	Insert Format	Tools [<u>D</u> ata <u>W</u> ind	low <u>H</u> e	lp									
	🖻 🔒 🖨	à. 🚏 🕺 🖻	6 3	💐 🗠 🕶	C21 - v	۹. (\$	Σ	f∗ <mark>≜</mark> ,	, <mark>Z</mark> ↓		@	₽.	100%	- 5
Ari	al	• 10 • F	I	<u>n</u> ≡ :	≣≣	•••	\$	%	,	00. 0. + 0	ŧ	•		- 🕭	- <u>A</u>
	D2 💽	 = {=(SUM(IF	F(DMFT>	LARGE	E(DMF	T,R	100	VD(CO	UNT(DMF	T)/3,	D)),DI	MFT,O	I))+LAI
	A	В /З	0)-COI	UNT(IF(DI	MFT>L	ARGE	E(DN	1FT,	ROUN	ID(CC	UNT	(DMI	FT)/3	,0)),C(OUNT(
1	individual no.	DMFT	mea	an DMFT		SiC	$ \rightarrow $		Formula	Bar					
2	1	0	1.90	0973871	4.61	42857	714)							
3	2	1					7								
4	3	0													
5	4	2													
6	5	0													
7	6	0													
8	7	C													

Please observe: You should not confuse colon (,) and semicolon (;). If you are a user of Microsoft®Excel 2000, you are supposed to use colon (,). If you are a user of Microsoft®Excel 98 Macintosh Edition, you are supposed to use colon semicolon (;).

These rules possibly vary with different language versions of Excel.

For a set of data with breakdown of DMFT according to number of individuals

When a data are already grouped, such as "173 persons have 0 DMFT, 58 persons have 1 DMFT, 74 persons have 2 DMFT" and so on, the Mean DMFT can be calculated easily by a few basic functions in Excel®. As for the SiC Index, you can use a formula we have developed.

Entering the data

Enter DMFT indices in ascending order in each cell of one column (for example Column A) and the corresponding number of persons in another column (for example Column B).

Please observe: If you have the percentage distribution instead of person numbers, you can get them by multiplying each percentage by the total number and dividing the result by 100. If you do not know the total number, you can get the estimated SiC Index by putting the percentage data in the column for numbers and following this method.

Calculating the Mean DMFT

Click one empty cell (for example C2). Then click the fx sign called **Paste Function**.

	<u>Eile E</u> dit <u>V</u> iew	Insert F <u>o</u> rmat]	ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp		
D	🖻 🖬 🎒	à 🚏 👗 🖻	🛍 ダ 🗠 •	े न 😤 😤	Σf_{π})ê↓ Z↓ 🛍 🧐
Ari	al	▼ 10 ▼ B	<i>I</i> <u>U</u> ≣ ₹	≣ ⊒ ඕ \$	% -	+,0 ,00 ∓≣ i
	C2 💽	r =			<u> </u>	
	A	В	С	D	E	1. Click one
1	DMFT	number	mean DMFT	SiC		emnty cell
2	0	173				empty cen.
3	1	58		ľ		
4	2	74				
5	3	31			•	2. Click here.
6	4	38				
7	5	15				
8	6	10				

Click **SUMPRODUCT** in the **Function name** box. Then click **OK** or press **ENTER**.

You see the **SUMPRODUCT** box now. To enter the values, select all the cells in which the DMFT values are put, and the corresponding cells with numbers of persons (in the example, from A2 to A20 for **Array1**, from B2 to B20 for **Array2**).

📲 🖺 Eile Edit View	Insert Format]	<u>r</u> ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp		
0 📽 🗉 🥌	🗟 🖤 👗 🖻	🖻 🚿 10 -	er 👻 🍓 😤	$\Sigma \int_{\mathcal{S}} \frac{\mathbb{A}}{\mathbb{Z}} \frac{\mathbb{Z}}{\mathbb{A}}$	J 🛄 🖞
Arial	• 10 • B		s = 🔤 🕏	% , *.0 +	38 律 1
SUMPRODUCT	✓ × ✓ = =S	UMPRODUCT(A2:A20,B2:B20)	
A	В	C	D	E	
1 DMFT	number	mean DMFT	SiC		
2	173	(20,B2:B20)	Į		
3 1	{	ł	[
Array1 A	2:A20		<u>™</u> = {0;1;2;3;	4;5;6;7;8;9	
Array2 B2	2:B20		 = {173;56;7	(4)31)38): Sele	ect the cells
Array3			💽 = array	froi	n A2 to A20
				for	'Array1',
Multiplies correspondin of those products. Array2: arr	g numeric compone av1.arrav2 are	nts in given ranges 2 to 30 arrays for	= 804 ; or arrays and retu which you want to	urns the si froi for multiply a	n B2 to B20 'Array2'.
the	n add components	. All arrays must ha	ave the same dimer	nsions.	
🕄 Formula r	esult =804		OK	Cancel	

Then divide them by the total number of persons and press **Enter**. Now you have got the Mean DMFT!

	<u>File E</u> dit <u>V</u> iew	Insert F <u>o</u> rmat]	ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp		
0	🖻 🖬 🎒	à 🚏 👗 🖻	🛍 🝼 🔹	्य 👻 🍓 😤	$\Sigma f_{\mathbf{x}} \stackrel{\mathbf{A}}{\underset{\mathbf{Z}}{\downarrow}} \stackrel{\mathbf{Z}}{\underset{\mathbf{A}}{\downarrow}}$	- 🛍 🖞
Ari	al	• 10 • B	<i>I</i> <u>U</u> ≣ ∄	s = 🖬 🕏	%, *.0 .00) 📬 1
	C2	= =S	UMPRODUCT(#	A2:A20,B2:B20))/421	
	A	В	С	D	E	
1	DMFT	number	mean DMFT	SiC		
2	0	173	1.909738717			
3	1	58				
4	2	74				
5	3	31				
6	4	38				
7	5	15				
8	6	10				

Note: Alternatively, you can use the **SUM** function to get the total number of persons. In this example, the expression would have been "=SUMPRODUCT(A2:A20,B2:B20)/SUM(B2:B20)".

Calculate the SiC Index

With a formula we have developed combining with Excel® worksheet functions, you can calculate the SiC Index easily.

First, examine the cumulative numbers. Click the first cell of the column (E2 in the example) for the cumulative number and click the Σ sign called **Autosum**.

	Eile Edit View Insert Format Tools Data Window Help										
Aria	al	• 10 • B		≣ = ⊡ \$`	AutoSum	3│\$₽\$₽│⊡▼					
	A	B	С	D	E	F					
1	DMFT	number	mean DMFT	SiC	cumulative*#	DMFT*#					
2	0	173	1.909738717								
3	1	58				Ï					
4	2	74									
5	3	31				ick hore					
6	4	38			2. C	lick here.					
7	5	15									
8	6	10									

Then enter the cell reference of the upper cell, colon (,), and the cell reference of the number corresponding to the lowest DMFT. (Generally, it is DMFT 0).

	<u>File E</u> dit <u>V</u> iew	Insert F <u>o</u> rmat I	ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp			
0	🖻 🖬 🎒 [À 🚏 👗 🖻	🛍 ダ 🗠 🔹	ा 🗸 🍓 😤	Σf_{s}		10 🧶 🔮 🛍
Ari	al	▼ 10 ▼ B	<i>I</i> <u>U</u> ≣ ₹	≣ ≣ 🛱 \$	%,	◆ 0 00 00 ◆ 0	律 律 📃 •
	E2	- = =S	UM(E1,B2)				
	A	В	С	D	E		F
1	DMFT	number	mean DMFT	SiC	cumula	ative #	DMFT*#
2	þ	173	1.909738717	L		173	Į
3	1	58					ľ
4	2	74					
5	3	31				Seleo	ct E1 and
6	4	38				B2 f	or SUM.
7	5	15					
8	6	10					

Please observe: There should be no number in the upper cell of cumulative numbers (E1 in the example, though you can put letters in the cell.

Please observe: You should put colon (,) between cell references for the specific values of **SUM** *now.*

Drag the **outside selection** of the first cell of the column for the cumulative number to fill the column with the cumulative numbers (from E2 to E20, in the example).

	File Edit View Insert Format Tools Data Window Help											
0	$\square 1. Click E2. \qquad \qquad$											
Aria	al	• 10	• B	<u>I <u>U</u> ≣ ∄</u>	s = 🔤 🕏	%, *.0 .00	} 🛊 🛊 🛄 •					
	E2		= =S	UM(E1,B2)								
	A	В		С		E	F					
1	DMFT	numb	er	mean DMFT	SiC	sumulative #	DMFT*#					
2	0		173	1.909738717		173						
3	1		- 58			231						
4	2. Drag th	e E2	-74			305						
5	outside sel	lection	- 31			336						
6	until E20.		- 38			374						
7			- 15			389	V					
8	6		10			399						

To examine the product of the DMFT index and the corresponding number of persons, click the first cell of the column for the product (F2 in the example). Then click the = sign called **Edit Formula**.

	<u>Eile E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat <u>I</u>	ools <u>D</u> ata <u>W</u> ind	low <u>H</u> elp		
) 🖻 🖪 🎒 [à. 🚏 👗 🖻	🛍 ダ 🗠 🔹	ा 🗸 🍓 🏟	Σf_{*} 1. C	lick F2. 👌 🛽
Ari	al	• 10 • B	<i>I</i> <u>U</u> ≣ ∃	s = 🖬 🕏	%, ₩,	3 17 17 🗹 •
	F2					
	A	В	,c	D	E	F
1	DMFT	numbe <mark>. Edit F</mark>	ormula DMFT	SiC	cumulative*#	DMFT*#
2	0	173	1.909738717		173	
3	1	58			231	ľ
4	2	74			305	
5	3	31			336	
6	4	38				
7	5	15			2. C	lick here.
8	6	10			399	

Multiply the lowest DMFT index by the corresponding number of persons (Cells A2 and B2 in the example).

	<u>File E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat <u>T</u>	ools <u>D</u> ata <u>W</u> inde	ow <u>H</u> elp		
0	🖻 🖬 🎒	à 🖤 👗 🗈	🛍 🝼 🕨 🔹	cu 🗸 🍓 😤	5 1*	3. Select A2 and
Aria	al	• 10 • B	IU	\$	%,	B2 for the
	F2		2*82			formula will be
	A	В	C	D	E	Δ2*R2
1	DMFT	number	mean DMFT	SiC	cumula	A2 D2,
2	0	173	1.909738717			
3	1	58				231
4	2	74				305
5	3	31				336
6	4	38				374
7	5	15				389
8	6	10				399

Drag the **outside selection** of the first cell of the products to fill the column with the products (from F2 to F20 in the example).

🏝 🗅 Aria	File Edit View	Insert Format I	iools Data W C V V I U E	1. Drag the F outside selection until F20.	$\begin{array}{c} 2\\ \text{ion}\\ \mathbf{x} & \mathbf{x} + \mathbf{x} $	· 他 愛 移 10 年 年 一 ·
	F2		2°B2 L	5		
	A	В	U	U	E	
1	DMFT	number	mean DMFT	SiC	cumulative #	DMFT * 🕊 🔤
2	0	173	1.909738717	7	173	
3	1	58			231	58
4	2	74			305	148
5	3	31			336	93
6	4	38			374	152
7	5	15			389	75
8	6	10			399	60

Name the range of the DMFT indices (in Column A) "DM", the range of the cumulative numbers (in Column E) "CU", and the range of the products of the DMFT and the percentage (in Column F) "PR". Select the range, click the arrow sign to open the white box called **Name box**, and enter "DM", "CU", and "PR" respectively.

8	<u>File E</u> dit <u>V</u> iew	Insert Format I	ools <u>D</u> ata <u>W</u> inde	ow <u>H</u> elp	1 1 6	
	🚔 日 🎒 [à 🖤 👗 🗈	🛍 🝼 🗠 👻	ा न 🍓 😵	Σf_* from	A2 to A20.
Ari	al	▼ 10 ▼ B	IU ≣∃	≣ <u>∋</u> \$	% .	
	DM .					
	Name Box	B		D	F	F
1	DMFT	pumber	mean DMFT	SiC	cumulative #	DMET * #
2	0	173	1.909738717		2. Cl	ick here. 0
3	1	58			2. 0.	8
4	2	74			305	148
5	3	31			336	93
6	4	38			374	152
7	5	15			389	75
8	6	10			399	60
9	7	7			406	49
10	8	4			410	201
11	9	2			3. En	iter the name.
12	10	3			415	30
13	11	1			416	11
14	12	U			416	
15	13	U			416	0
16	14	2			418	28
17	15	0			418	
18	16	2			420	32
19		U 1			420	10
20		<u> </u>			421	10

Click one empty cell (for example D2). Then enter the formula indicated below in **Formula Bar** (the box next to = sign).

	<u>File E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat <u>I</u>	ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp				
D	🖻 🖬 🎒	à. 🚏 🕺 🗈	🛍 🝼 🔹 🕫	୍ୟ 👻 🍓 😤	Σf_{s}	A↓ Z↓	11 🧶 🚜	1
Aria	al	▼ 10 ▼ B	<i>I</i> <u>U</u> ≣ ≣	≣ ≣ ඕ \$	%,	1. Cli	ck one	-
	D2 💽	<u> </u>		/		empty	cell.	
	A	B For	rmula Bar		E		F	
1	DMFT	number	mean DMFT	SiC	cumula	ative*#	DMFT*#	
2	0	173	1.909738717			173		0
3	1	58				2. Ent	er the	8
4	2	74				formu	ıla here.	8
5	3	31						3
6	4	38				374	16	2
7	5	15				389	7	75
8	6	10				399	6	30

<Microsoft®Excel 2000 >

=(SUM(IF(CU>ROUND(SUM(NU)/3*2,0),PR,0))-

(LOOKUP(ROUND(SUM(NU)/3*2,0),CU,DM)+1)*(ROUND(SUM(NU)/3*2,0)-LOOKUP(ROUND(SUM(NU)/3*2,0),CU)))/(SUM(NU)-ROUND(SUM(NU)/3*2,0))

<Microsoft®Excel 98 Macintosh Edition>

=(SUM(IF(CU>ROUND(SUM(NU)/3*2;0);PR;0))-

(LOOKUP(ROUND(SUM(NU)/3*2;0);CU;DM)+1)*(ROUND(SUM(NU)/3*2;0)-LOOKUP(ROUND(SUM(NU)/3*2;0);CU)))/(SUM(NU)-ROUND(SUM(NU)/3*2;0))

Press "Control"+"Shift"+"Enter" (Note! Not only "Enter").

Congratulations! You have succeeded in calculation the SiC Index.

	<u>File E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat	<u>T</u> ools <u>D</u> a	ata <u>W</u> ind	low <u>H</u> e	lp							
D	🖻 🖬 🖨 🕻	à. 🚏 👗 🖻	h 🛍 💅	N +	C21 - v	۹. 📢	?	Σf_{s}	≜ ↓ Z↓		9 🕹	100%	• 🖗
Ari	al	▼ 10 ▼]	B <i>I</i> <u>I</u>	ī ≣ :	≣ ≣		\$	%,	•.0 .00 •.€ 00.	t≣ ·		+ 🕭 ·	• <u>A</u>
	D2	 = {=(SUM(IF)	CU>RO	UND(S	SUM(NI	J)/3	3*2,0),F	'R,0))-(L	OOKU	P(ROUN	D(SUN	M(NU)
	A	B S	JM(NU)/	3*2,0),C	:U)))/(S	SOM(NI	J)-F	ROUND	(SUM(N	U)/3*2	,0))}		
1	DMFT	number	mean	DMFT		SiC		cumul	ative #	DMI	FT * <mark>Form</mark>	ula Bar	
2	0	173	3 1.909	738717	4.61	42857	14		173		0		
3	1	58	3		\sim		7		231		58		
4	2	74	1						305		148		
5	3	31							336		93		
6	4	38	3						374		152		
7	5	15	5						389		75		
8	6	10							399		60		

Please observe: You should not confuse colon (,) and semicolon (;). If you are a user of Microsoft®Excel 2000, you are supposed to use colon (,).

If you are a user of Microsoft®Excel 98 Macintosh Edition, you are supposed to use colon semicolon (;).

You may have some technical questions while you are calculating. Then you can click the **?** sign called **Help** or **Office Assistance**.

Nicrosoft Excel - SiC					Click here.		
Ble Edit View Insert Format Tools Data Windo Help □ □ □	🗙 Microsoft	Excel - SiC		(\prec \sim		
Arial • 10 • B I ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	🐮 Ele Edit	t <u>V</u> iew Insert F	Format Tools	Data Window H	eb	\searrow	
Arial 10 B I II II II II III III IIII IIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	🗅 😅 🖬	l 🗇 🗋 💞	X 🗈 🛍	🖉 10 × 00 ×	🍓 🖤 Σ 🏂 🛊 👬 🛍 🖉 🤯 100%		
Al = A B C D E 1 Image: Construction of the constructio	Arial	- 10	• B I	u ≡ ≡ ≡	1 🛙 \$ %,% 🖓 律律 🖃 • 🕭	- A Office Activ	stant
A B C D E What would you like to do? J K 1 2 3	A1	*	=			01100 4655	Kain
1	A	B	С	D E	what would you like to do?	J	К
2	1				Type year question here, and then click		
3 • Search 5 • Search 6 • Tips • Options • Close 8 • Tips • Options • Close 9 • Tips • Options • Close 10 • Tips • Options • Close 11 • Tips • Options • Close	2				Search.		
4 • Search 5 • Tips • Options • Close 8 • Tips • Options • Close 9 • Tips • Options • Close 10 • Tips • Options • Close 11 • Tips • Options • Close	3				Ecologia (
5 Image: Close 6 Image: Close 7 Image: Close 8 Image: Close 9 Image: Close 10 Image: Close 11 Image: Close 12 Image: Close	4				Search		
b Image: Close 7 Image: Close 8 Image: Close 9 Image: Close 10 Image: Close 11 Image: Close 12 Image: Close	5						
	0				Tine Ontione Close		
	0				C The Cone		
	9						
	10						
12	11				64		
	12						
13	13						
14	14						
15	15						
16	16						

- The End -